

Requirements

Team 10: Hard G For GIFs
Dragos Stoican

Rhys Milling

Samuel Plane

Quentin Rothman

Bowen Lyu

Jack Gerhard

a)
To define requirements we decided upon using IEEE’s 12207.1 [2] standards as a
base and also followed their terminology. As a supplement, we also used guru99’s
article [1] to help us clarify the system requirements. to assist us in defining the
system requirements in particular.

The requirements defined here were based on a few factors. We first analysed the
assessment product brief and used specific features as a base. Then we expanded
on them, discussing as a group how to implement this, ensuring that each
requirement was feasible and achievable.

We also organised two meetings with the customer so they could review our
proposed requirements and understand how we were going to develop the system.
This allowed us to reduce the chance of misinterpretations, clarify what the end
product was, and resolve any early issues we had.

We have sorted our requirements, into three separate tables:

1. User requirements are high-level abstractions, designed to be presentable to
our customers and non-technical people in order to help us develop our
functional requirements.

2. Functional requirements, a subset of system requirements we split up the
user requirements into a more concrete implementation. This is the “business
logic” of the game. Defining the behaviour (inputs and outputs) and how
everything interacts together.

3. Non-functional requirements, also a part of system requirements, focusing
more on the quality of the game. Not completing these requirements would
result in a game that would be unsuitable for the customer.

To represent this data we have chosen to present through tables each focusing on
different groups of requirements. The tables all follow a similar layout, the ID column
uniquely identifies every requirement, with a person-friendly identifier and a number
as a short representation (1st number representing the type i.e. functional /
non-functional, etc. The 2nd number represents the object to which a group of
requirements relates to i.e. boat. Finally, the 3rd represents the position in the
sub-table to help us identify each requirement in the list.

The priority column helps us decide what will come first during the implementation,
each requirement is ranked on the following scale:

● “Low”, this requirement would be implemented for the final release build, but
not in the earlier beta builds.

● “Medium”, this requirement would be implemented on our second build (v0.2)
as it isn’t a fundamental requirement which others build off, but it should be
done before the deadline as it is still a core requirement, ensuring the
implementation is to a good standard and any issues are ironed out.

● “High”, needs to be implemented in our first stable version (v0.1). A lot of
other requirements depend on this being present.

b) User Requirements

ID Description Test Assumptions Priority

Boat

UR_UNIQUE_BO
ATS
1.0.0

In all the different
boats, they must all
be unique in their own
ways. Acceleration,
Speed,
Maneuverability, and
Robustness. Create
boats based on these.

Boats can be assigned
different attributes
Measurable by
comparing how much
the boat movement
after:
player interaction when
hitting obstacles
The boats look visually
distinct

There is a base boat
Boats have attributes
to control their
characteristics
Boats can be
represented by an
image

Medium
(v0.2)

UR_DAMAGE
1.0.1

Colliding with
obstacles damages
the boat

When a boat collides,
the stamina should be
reduced

Boat, movement, and
obstacles have been
implemented

Medium
(v0.2)

UR_CONTROLS
1.0.2

The boat responds to
the controls inputted
by the user in a
comfortable way

Boat’s course will be
adjusted when a user
uses the specific key
bindings

A base boat has been
implemented and is
currently stationary

High
(v0.1)

Map

UR_MAP 1.1.0 The map through
which players race
includes obstacles

Must be long enough in
length to cover an
entire leg
Features obstacles
which will reduce the
player’s stamina

Need to make a
background graphics
to represent the map

High
(v0.1)

UR_LANE 1.1.1 Stay in your lane, or
you get a penalty of X
seconds for the
amount of time you
spend out of it

Deliberately move the
boat to the other lane,
and check if a warning
is given. Check to see if
the penalty is different
for when the time spent
in it changes.

Map has already been
implemented

Medium
(v0.2)

UI / HUD

UR_HUD 1.2.0 Have a clear UI that is
easy to understand
and see what
corresponds to what

Displays the timer, leg,
position, stamina, and
robustness

Boats with variables to
store their statistics
have been
implemented

Medium
(v0.2)

UR_MENU 1.2.1 The game has a main Displays game logo, Screens have been Medium

Functional Requirements

menu screen buttons to navigate the
game

implemented (v0.2)

UR_CHANGE_RE
SOLUTION 1.2.2

The game should
offer the option to
play in different
resolutions

The UI elements
location and sizes
should be based on the
screen width and height

Game works in at least
one resolution

Low
(v1.0)

UR_DISPLAY
INSTRUCTIONS
1.2.3

The game should
display instructions
about the input it is
expecting from the
user

Display text that
explains what the
player has to do next

Game works, and the
input used for the
game has been
determined

Low
(v1.0)

UR_CHANGE_SE
TTINGS 1.2.4

The user should be
able to change
multiple settings on
the settings screen

The available options
should include audio,
contro,l and graphic
settings

Game works with
default settings

Low
(v1.0)

Game

UR_DIFFICULTY
1.3.1

Each leg of the race
becomes harder

AI stats, obstacle
amount, global speed
movement are
increased

Map, AI, unique boats,
legs

 Low
(v1.0)

ID Description Test Alternatives UR_ID

FR_STAMINA
2.0.0

Each team gets tired
and slower as the race
progresses.

Reaction speed to user
controls progressively
gets worse

Boat speed is reduced. 1.0.0

FR_STATS
2.0.1

Define each stat and
how they impact the
boat and each other

Each stat that a boat
has has an effect on its
performance

Boats all act in the same
way and races must be
won through skill

1.0.0

FR_ASPECT
2.0.2

Each boat has a
different aspect

Check each boat
texture to ensure they
are significantly
different from one
another

Use boats of different
sizes with the same
texture to differentiate
between them

1.0.0

FR_OBSTACLE
S 2.0.3

Different obstacles
appear on the course
randomly.

Boat’s robustness is
decreased by the
specific damage of the
obstacle

Instead of every obstacle
having unique damage
amounts. Make it
randomly generated

1.0.1
1.1.0

FR_PENALTY
2.0.4

Get a penalty for time
spend outside the lane

One of the boat’s stats
are modified as a
penalty temporarily

Boat is frozen / on a
cooldown before they can
move again.
Other players stats are
improved temporarily

1.1.1

Non-Functional Requirements

Constraint Requirements

We had to adhere to two restraints: our stakeholders, the customer, and The
University of York Communications Office. We are required to market and sell our
game to the stakeholders ensuring it is playable and enjoyable by the ENG1 team.

FR_LANE 2.0.5 Determine if a boat
crosses out of its lane

The penalty system
will engage on the
person

A pop-up could occur to
notify them to move back

1.1.1

FR_DAMAGE
2.0.6

Detect a collision
between a boat and
an obstacle

Boat’s robustness is
decreased

Sound effect when a
collision occurs

1.0.1

FR_HEALTHBA
R 2.0.7

Each boat has a
health / robustness
bar that decreases
when obstacles are hit

Health bar is updated
when a collision occurs

Update the robustness
bar on a timer, rather
than immediately after a
collision

1.0.1
1.2.0

FR_MINIMAP
2.0.8

The player can see a
minimap in one of the
corners of the screen

Shows current location
in the leg

Have the minimap just
show upcoming terrain

1.1.0
1.2.0

FR_CONTROL
S 2.0.9

The player’s
movement should be
based on the player’s
input

Boat’s target position
is updated to reflect
the changed rotation

Use simple movement
that doesn’t involve the
rotation of the boat

1.0.2

FR_VARIABLE_
CONTROLS
2.0.10

The player’s ability to
turn, as well as its
speed, is based on
stamina

Boat movement is
gradual towards the
desired location,
factoring in current
stats

Have a set time of
movement, then a break
needs to be taken

1.0.2

ID Description Fit Criteria UR_ID

NFR_FAST_CONTR
OLS 3.0.0

When inputting the
direction, the response
from the game should be
instant

In <0.5 seconds
response to an
input, if not lower

UR_BOAT_CONTROLS

NFR_FAST_TRANSI
TION
3.0.1

When switching between
game states, response
should be instant

In <0.5 seconds
response to an
input, if not lower

UR_MENU, UR_HUD

Bibliography

1 https://www.guru99.com/functional-vs-non-functional-requirements.html

2 https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=669648

https://www.guru99.com/functional-vs-non-functional-requirements.html
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=669648

